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A B S T R A C T

Automatic and accurate dose distribution prediction plays an important role in radiotherapy plan. Although
previous methods can provide promising performance, most methods did not consider beam-shaped radiation
of treatment delivery in clinical practice. This leads to inaccurate prediction, especially on beam paths. To
solve this problem, we propose a beam-wise dose composition learning (BDCL) method for dose prediction in
the context of head and neck (H&N) radiotherapy plan. Specifically, a global dose network is first utilized
to predict coarse dose values in the whole-image space. Then, we propose to generate individual beam
masks to decompose the coarse dose distribution into multiple field doses, called beam voters, which are
further refined by a subsequent beam dose network and reassembled to form the final dose distribution. In
particular, we design an overlap consistency module to keep the similarity of high-level features in overlapping
regions between different beam voters. To make the predicted dose distribution more consistent with the
real radiotherapy plan, we also propose a dose-volume histogram (DVH) calibration process to facilitate
feature learning in some clinically concerned regions. We further apply an edge enhancement procedure
to enhance the learning of the extracted feature from the dose falloff regions. Experimental results on a
public H&N cancer dataset from the AAPM OpenKBP challenge show that our method achieves superior
performance over other state-of-the-art approaches by significant margins. Source code is released at https:
//github.com/TL9792/BDCLDosePrediction.
1. Introduction

Head and neck (H&N) cancer is a broad category of diverse cancer
types, originating from various soft tissue, glands, and bones (Pai and
Westra, 2009). To kill cancerous cells while avoiding normal tissue
damage, external radiation therapy (RT) is regarded as the preferred
treatment, aiming to deliver a high radiation dose (i.e., prescription
dose) to the planning target volume (PTV) while minimizing the dose
to organs-at-risk (OARs) via multiple focused radiation beams (Khan,
2010). The radiation delivery of RT is followed by RT plan. Currently,
one of the common treatments for external RT is intensity-modulated
radiation therapy (IMRT), in which delivered beams are highly con-
formal to the PTV, and the radiation intensity for each beam can be
modulated individually (Webb, 2003). Thus, the RT plan in IMRT is
more acceptable physically in the clinical workflow.
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Dose distribution design in RT plan is a complex process, includ-
ing CT image acquisition, ROI contouring on the acquired CT image
by radiation oncologist manually (Fig. 1(b) and (e)), treatment pa-
rameter arrangement (e.g., geometry of beams), and plan parameter
optimization (e.g., dose-volume objectives). The result is a spatial dose
distribution, which is called a dose distribution map. The intensity
value in each voxel represents the amount of radiation dose accepted
by the body in the unit of Gray (Gy) (Khan, 2010).

To obtain clinically acceptable RT plan, dosimetrists need to man-
ually adjust treatment parameters in a trial-and-error manner, this
process costs hours so that delaying the best treatment period for
each patient (Kearney et al., 2018b). In addition, the quality of RT
plan has high variability between inter- and intra-institutions due to
differences in technological parameters (including treatment planning
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Fig. 1. Examples of two H&N RT plans, with each side of the line corresponding to one subject. Each subject includes the CT images shown as (a) and (d) in axial view; ROI
contours shown as (b) and (e) superimposed on the dose distribution map and plan CT image in sagittal view; the dose distribution map shown as (c) and (f) in axial view, where
yellow arrows indicate different beam paths.
system and modality) as well as planner’s skill level (e.g., years of
experience and education) (Nelms et al., 2012). The above-mentioned
reasons would result in sub-optimal RT plan and thus affect the result
of the plan (Peters et al., 2010). Considering the challenge and time-
consuming nature of manual RT plan, developing automated methods
(e.g., knowledge-based planning Momin et al., 2021; Shiraishi and
Moore, 2016; Ge and Wu, 2019; Babier et al., 2020) is of great clinical
value.

Recently, due to the fast development of deep learning (DL), es-
pecially the convolutional neural network (CNN) as well as its vari-
ants (Ronneberger et al., 2015; Milletari et al., 2016), great success has
been achieved in solving a broad array of computer vision problems
(Liu et al., 2019; Shan et al., 2021; Luan et al., 2008; Jia et al., 2012;
Zacharaki et al., 2008). To automatically predict dose distribution map,
many DL-based methods have been proposed, which can be gener-
ally classified into three categories: 1) designing advanced network
architectures, such as C3D (Liu et al., 2021), DoseNet (Kearney et al.,
2018a), HD U-net (Nguyen et al., 2019) and DCNN (Gronberg et al.,
2021); 2) introducing additional prior knowledge, such as distance
map (Zhang et al., 2019) and gradient map (Tan et al., 2021); 3)
proposing domain-specific loss functions, such as dose-volume his-
togram (DVH) loss (Nguyen et al., 2020). However, these DL-based
methods are still facing limitations. For instance, the first group of
methods often focuses on improving the model’s global performance
while losing accuracy for some local regions related to hard-to-learn
features. The second group of methods considers physical prior of dose
distribution to facilitate the learning of discriminative features while
ignoring the geometric prior of beam-shaped radiation in RT, thus
causing poor performance along beam paths. The last group of methods
utilizes elaborated loss functions to regularize the key indices while
imposing high computational overhead and GPU memory consumption
on the model training.

In this work, to deal with the aforementioned limitations and
achieve high-performance automatic RT plan, we propose a beam-wise
dose composition learning (BDCL) method to gradually estimate the
dose distribution map in a three-stage (global-beam-global) manner.
Specifically, we first employ a global dose network (GDN) to predict a
coarse dose distribution over the whole-image space. Then, the coarse
dose distribution is decomposed into a series of field doses (beam
voters) and further refined by a beam dose network (BDN) according to
the geometric prior of the radiation beams. Finally, all the refined beam
voters are reassembled into a new global dose distribution, which is
further refined by our proposed edge enhancement and DVH calibration
processes to meet clinical criteria. We conduct extensive experiments
on a public H&N cancer RT dataset, the experimental results show
that our method outperforms other state-of-the-art methods by a sig-
nificant margin and the predicted dose distribution is much closer to
the physically deliverable one by using the machine parameters and
beam fluence that deliver it. In summary, our main contributions are
four-fold:
2

• We propose to generate beam masks as the prior knowledge of
beam-wise radiation delivery by a novel beam mask generator,
which guide and decompose the coarse dose distribution map into
multiple field doses. This process exploits dose distribution on the
beam paths in a beam-wise way, which decomposes the difficult
task into a few easy-to-learn sub-tasks.

• We propose an overlap consistency module to make the pre-
dictions of overlapped regions between different beam voters
consistent, which improves the accuracy of the prediction and
accelerates the convergence speed of the model.

• We present a novel multi-beam voting mechanism to reassemble
the global dose distribution map from the multiple beam voters,
which lays the foundation for global-wise dose refinement.

• We integrate DVH metrics into DL model training by the proposed
DVH calibration process, which makes the prediction in ROIs
more accurate and efficient. Besides, we also apply edge en-
hancement to enhance boundary learning, making the prediction
sharper.

This work is a substantial extension of our conference paper pub-
lished on MICCAI 2022 (Wang et al., 2022) in the following highlighted
aspects. First, we further improve the performance of our method by
proposing the overlap consistency module and the edge enhancement
process. Second, we conduct comprehensive ablation studies on the
proposed method to justify our designs in a more systematic way. Third,
we introduce more radiotherapy-specific DVH metrics to evaluate ex-
perimental results, demonstrating that our prediction is closer to the
real clinical RT plan than predictions of the state-of-the-art methods in
terms of clinical criteria. Last, we have thorough discussions on this
study, regarding experimental results, strengths, and limitations of the
proposed method.

2. Related works

Automatic and efficient dose prediction in RT plan is highly de-
sired in clinical practice (Kearney et al., 2018b; Zheng et al., 2019;
Wang et al., 2020). To achieve deliverable dose prediction, many
methods leverage prior knowledge from delivered high-quality RT plan,
namely knowledge-based planning (KBP), to produce an unseen patient
plan (Wu et al., 2009). According to recent clinical research statistics,
KBP holds great promise and application in RT practice, since it can
accelerate process of RT plan and reduce manual interventions (McIn-
tosh et al., 2021; Scaggion et al., 2023; Fogliata et al., 2019; El Naqa,
2021). The KBP methods can be divided into two major categories: 1)
traditional KBP methods and 2) DL-based KBP methods.

2.1. Traditional KBP methods

Traditional KBP methods utilize various anatomical and geometrical
information to build a mathematical or statistical model to predict
dosimetry features for a new patient. For example, Chanyavanich et al.
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(2011) developed a case-similarity algorithm to identify a matched
case for a given query case and adjusted various treatment parameters
from the matched case to transfer new plan. Boutilier et al. (2015)
utilized overlap volume histogram (OVH) information to predict weight
values of dose constraints of OAR by K-nearest neighbors and multi-
nomial logistic regression, which can guide the generation process of
new plan. Amit et al. (2015) employed a random forest regression
algorithm to predict high-quality dose distribution by learning the
relationships between beam angles and anatomical features. More-
over, Campbell et al. (2017) proposed an artificial neural network dose
model (ANN-DM) to calculate dose distribution according to a set of
geometric parameters (distance-to-PTV, distance-to-OAR, etc.) and plan
parameters (PTV volume, photon beam energy, etc.). These methods
can achieve decent results when dealing with easy cases or specific
datasets. However, due to the limited representation ability of the hand-
crafted features, their performance generalized to the hard cases or
multi-institute data is still under expectation.

2.2. DL-based KBP methods

In contrast to traditional KBP methods, DL-based methods can di-
rectly learn discriminative features from the raw data driven by the
target. For instance, Kearney et al. (2018a) designed a novel neural
network (DoseNet) based on V-Net (Milletari et al., 2016) for prostatic
dose prediction. Zhang et al. (2020) applied U-Net-like architecture and
dense feature aggregation block to capture features of multiple scales
for dose prediction in esophageal cancer patients, known as a densely-
connected neural network (DCNN). To further improve the prediction
performance and training efficiency, Nguyen et al. (2019) proposed a
hierarchically densely connected U-net (HD U-net) architecture based
on U-Net (Çiçek et al., 2016) and DenseNet (Huang et al., 2017)
for dose distribution prediction in H&N cancer. Moreover, Xu et al.
(2021) applied a triple-stage cascaded U-Net to predict H&N cancer
dose in a coarse-to-fine manner using the auto-context mechanism.
During the OpenKBP-2020 AAPM Grand Challenge, Liu et al. (2021)
proposed a U-Net-like cascaded three-dimensional model (C3D) with
data augmentation and knowledge distillation technique for dose pre-
diction in H&N cancer, achieving the first place in the Challenge.
Besides, Gronberg et al. (2021) designed a 3D U-Net-like network with
a densely connected sequence of dilated convolutions as the bottle-
neck level for dose distribution prediction, achieving second place in
the Challenge. To propagate low-level features into the deep layers
of the network, Zimmermann et al. (2021) employed ResNet blocks
after each down- and up-sampling convolution block and trained the
model with the one-cycle scheduler for dose distribution prediction. By
employing novel network architectures or advanced training strategies,
all the top-ranking methods consider the performance of the global
dose distribution while ignoring local information that can be learned
from some key regions, which leads to sub-optimal solutions in the
prediction. Therefore, in this paper, we propose the BDCL method to
consider more local information for facilitating the dose distribution
prediction.

3. Method

The workflow of our proposed method is illustrated in Fig. 3. We
first estimate a coarse dose distribution over the whole image in the
global-wise dose learning stage (Section 3.1). Then, the coarse dose
distribution map is fine-tuned along different beam paths individually
through the beam-wise dose refinement stage (Section 3.2). Finally,
the beam-wise refined dose distribution map is further improved by
the edge enhancement and DVH calibration process in the global-wise
dose refinement stage (Section 3.3). The implementation details of the
3

proposed method are provided in Section 3.4.
Fig. 2. Illustration of beam mask generation. It shows that the generated beam masks
can reasonably characterize the beam paths in radiotherapy. Each row represents a
different slice location in the plan CT image.

3.1. Global-wise dose learning

As the first step of our method, we employ GDN to roughly estimate
the dose distribution as an initialization for the subsequent steps. The
GDN has a 3D U-Net (Ronneberger et al., 2015) architecture with minor
modification (as detailed in Section 3.4) and takes as input the CT
image concatenated with the segmentation masks of the PTV&OAR.
The output of the GDN is a 3D coarse dose distribution map (in the
same size as the CT image), which is supervised by the corresponding
ground-truth dose distribution map via mean absolute error (MAE) loss
during training.

Through this stage, we aim to get a coarse dose distribution map
that can generally represent the dose distribution over the whole image.
However, due to less consideration of the geometric relationship be-
tween beams and ROIs, the predicted dose values are often inaccurate
in some local regions (e.g., around regions of paths and ROIs). There-
fore, we propose the following beam-wise dose refinement step, as well
as the global-wise dose refinement step, to solve the problem.

3.2. Beam-wise dose refinement

In this stage, we refine the coarse dose distribution map by looking
into multiple field dose distribution maps individually contributed by
different beams. The critical techniques are listed below.

3.2.1. Beam mask generation
In IMRT for H&N cancer, there are typically seven to nine co-planar

beams with predefined angular positions, focusing together toward the
PTV. Delivering the high-dose radiation in this way will lead to a spoke-
shaped dose distribution. Following this geometric prior knowledge, the
beam paths can be simulated with the location of PTV regions and the
pre-defined angles in the treatment plan, which are represented as a
set of binary masks, called beam masks. Since the PTV location varies
across the CT slices, the beam masks are built slice-by-slice to make
them closer to the real beam paths. Specifically, given the PTV contour
𝐸𝑖 in a CT slice, we draw two parallel tangent lines along the predefined
beam angle 𝜃. The band region between the two parallel tangent lines
is marked as the beam mask, which is illustrated in Fig. 2.

3.2.2. Beam-wise dose learning
In clinical RT plan, the coarse dose distribution map is individually

optimized along different beam directions, resulting in differences in
the field dose distribution. Such variation in beam-wise dose distribu-
tion leads to difficulty in directly learning a dose distribution map to
conform all beam paths simultaneously. To overcome this challenge, we
propose a beam-wise decomposition strategy. Specifically, we utilize
the beam masks to decompose the coarse dose distribution map into
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Fig. 3. Overview of the proposed beam-wise dose composition learning (BDCL) method for dose prediction.
multiple field dose distributions, called beam voters. Each beam voter
represents the dose distribution prediction of one certain beam path.
In this manner, the global dose prediction task is converted into a
set of field dose prediction tasks, which can learn the features of
each different beam path independently. Given the coarse global dose
distribution map produced by the preceding GDN, we concatenate it
with the CT image, the PTV&OAR masks, and the beam masks to
composite a multi-channel input for the BDN to predict multiple beam
voters. The BDN can be any fully convolutional networks (FCNs) whose
output has the same spatial size as the input. In this study, we adopt two
representative FCN architectures (3D U-Net and ResUnet) as the BDN,
whose output is supervised by the ground-truth beam voters through a
beam-wise mean MAE loss as below:

𝐿𝑚(𝑃 ,𝐺) =

∑𝑁
𝑖=1

∑𝑁𝑖
𝑗=1

|

|

|

𝑃𝑖𝑗 − 𝐺𝑖𝑗
|

|

|

∑𝑁
𝑖=1 𝑁𝑖

. (1)

Here, 𝑁 is the number of beam voters, and 𝑁𝑖 is the maximum
number of voxels in the 𝑖th beam voter. 𝑃𝑖𝑗 and 𝐺𝑖𝑗 refer to the dose
value of the 𝑗th voxel in the 𝑖th beam voter for the prediction and the
ground truth, respectively.

In addition, since multiple beams are focusing on the common
PTV regions, beams with different directions have overlapping regions
between each other, including but not limited to the PTV regions.
These regions should be consistent and predicted to have the same
dose values. However, after beam-wise decomposition, each beam voter
is supervised independently, causing the risk of inconsistency among
the overlapping regions. To solve this problem, we impose the overlap
consistency constraint on all the beam voters. Specifically, supposing
one voxel in the coarse dose distribution map is passed by 𝑘 beam vot-
ers, in which the predicted dose values are 𝛼1, 𝛼2,… , 𝛼𝑘, respectively.
We regularize these 𝑘 values to be consistent with their mean value
𝛼 = 1

𝑘
∑𝑘

𝑗=1 𝛼𝑗 . The consistency loss is defined as:

𝐿𝑐𝑠(𝑌 , 𝛼) =

∑𝑀
𝑖=1

∑𝐾𝑖
𝑗=1

|

|

|

𝑌𝑖𝑗 − 𝛼𝑖
|

|

|

∑𝑀
𝑖=1 𝐾𝑖

, (2)

where 𝑀 and 𝐾𝑖 represent the number of voxels in overlapping regions
and beam voters through the 𝑖th voxel, respectively. 𝑌𝑖𝑗 denotes the
predicted dose value in the 𝑖th voxel of overlapping regions and the
𝑗th beam voter passes that voxel, and 𝛼𝑖 is a mean dose value in the
𝑖th voxel of overlapping regions.
4

3.2.3. Multi-beam dose aggregation
In order to reassemble the refined field doses into one global dose

distribution map, we propose a novel multi-beam voting strategy. In
this voting strategy, the dose value of one voxel in the final dose
distribution map is voted by the beam voters that contain this voxel.
Specifically, if one voxel is passed by multiple beam voters, all these
voters will vote for this voxel and contribute to the final dose value by
averaging operation. On the other hand, if the voxel is only passed by
one beam voter, the value of this voxel will be directly assigned as the
voxel value on that beam voter. We apply a MAE loss 𝐿𝑟 to make the
supervision on the global-image space, which is defined as:

𝐿𝑟(𝑌 , 𝑌 ) =
1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝑌𝑖 − 𝑌𝑖
|

|

|

, (3)

where 𝑁 is the number of voxels in the dose mask, and 𝑌𝑖 and 𝑌𝑖
represent dose values in the 𝑖th voxel of the prediction and the ground
truth, respectively.

3.3. Global-wise dose refinement

To further improve the predicted quality, we conduct the following
edge enhancement procedure and DVH calibration process during the
training phase of the BDN.

3.3.1. Edge enhancement
In the real dose distribution map, sharp edges exist in the dose falloff

regions. The main reasons are as follows: 1) the radiation delivered into
the patient body generates a clear beam path that contains high-dose
values on it while the background regions received by little radiation
only carry low-dose values; 2) the dose values decreased rapidly from
the PTV to its surroundings from the nature of radiotherapy require-
ments, in which the PTV reaches prescription dose while minimizing
the dose for OAR. However, due to the large size of the receptive field,
the CNNs tend to produce over-smooth output, which is undesired in
the predicted dose distributions with sharp edges.

Inspired by Tan et al. (2021), we propose a 3D edge enhancement
procedure, aiming to preserve the dose falloff regions in the prediction.
By applying the commonly used Sobel operator on the 3D final dose
distribution map, it extracts the gradient feature map that presents the
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value difference between neighboring voxels, as shown in Fig. 3. Then,
a 3D gradient loss is defined as follows:

𝐿𝑒(𝑌 , 𝑌 ) =
∑

𝑆∈{𝑆𝑥 ,𝑆𝑦 ,𝑆𝑧}

|

|

|

𝑆(𝑌 ) − 𝑆(𝑌 )||
|

, (4)

where 𝑌 and 𝑌 denote the dose distribution map of the ground truth
and the prediction. 𝑆𝑥, 𝑆𝑦, 𝑆𝑧 are Sobel operators in 𝑥, 𝑦, 𝑧 dimen-
sions, respectively. This loss tries to penalize the over-smooth dose
distribution near the dose falloff regions.

3.3.2. DVH calibration
In clinical practice, dosimetrists concern more about the dose dis-

tribution inside the ROIs than that of the non-ROIs. The DVH curve
indicates the quality of dose distribution inside ROIs, in which the
horizontal axis represents the absorbed dose value, and the longitudinal
axis represents the relative volume of exposure to the corresponding
dose. Inspired by this observation, Nguyen et al. (2020) proposed a
DVH loss function to calculate the volume difference (𝑦 coordinate of
he DVH curve) between the prediction and the ground truth. It requires
epeated image-based computations since the processing of the whole
D image is needed for each dose value threshold (𝑥 coordinate of DVH

curve). If we reduce the computational consumption by increasing the
threshold interval, it would lose accuracy to fit the ground-truth DVH
curve. Hence, we proposed a value-based DVH loss to balance efficiency
and accuracy. Besides, we also design criteria-based DVH loss functions
to further emphasize the prediction accuracy inside the ROIs.

Value-based DVH loss: In order to utilize the guidance of DVH
criteria for DL model training, we propose a value-based DVH loss
defined as follows:

𝑣𝐷𝑉 𝐻 =

∑𝐻
𝑠=1

∑𝑁𝑠
𝑛=1

|

|

|

𝑅
(

𝑌 ⋅𝑊𝑠
)

𝑛 − 𝑅
(

𝑌 ⋅𝑊𝑠
)

𝑛
|

|

|

∑𝐻
𝑠=1 𝑁𝑠

, (5)

where 𝐻 is the maximum number of ROIs, 𝑁𝑠 is the foreground
voxel number in the 𝑠th ROI mask (𝑊𝑠) and 𝑅(⋅) denotes the sorting
operation. Specifically, we first utilize ROIs masks to extract the dose
values in ROIs and apply a sorting operation to rank the voxel with
similar dose values and simulate the DVH curve. Then, we calculate
the difference between the prediction and the ground-truth ranked
dose value to help conduct the supervision. In this way, the volume
information of the 𝑦 coordinate of the DVH curve can be hidden in
the sorted dose value as the form of rank. Note that only one round
of computation is needed on the whole image, and the processing is
directly employed on the dose values, and the processing is directly
employed on the dose values, which is more efficient and accurate.

Criteria-based DVH loss: In clinical RT plan, dosimetrists generally
determine the feasibility of the plan by observing a set of critical points,
such as 𝐶𝑃𝑇𝑉

1 , 𝐶𝑃𝑇𝑉
95 , 𝐶𝑃𝑇𝑉

99 , 𝐶𝑂𝐴𝑅
0.1𝑐𝑐 , and 𝐶𝑂𝐴𝑅

𝑚𝑒𝑎𝑛 , denoting the dose value
received by top-ranked 1%, 95%, 99% volume of PTV regions, top-
ranked 0.1cc volume and the mean value of dose value in OAR regions.
To specifically take advantage of these important points, we propose a
criteria-based DVH loss to further improve the accuracy in ROIs, which
is defined as follows:

𝑐𝐷𝑉 𝐻 = 𝐷𝑃𝑇𝑉
1 +𝐷𝑃𝑇𝑉

95 +𝐷𝑃𝑇𝑉
99 +𝐷𝑂𝐴𝑅

0.1𝑐𝑐 +𝐷𝑂𝐴𝑅
𝑚𝑒𝑎𝑛 , (6)

where we use the dose value of 99th, 95th, and 1st percentile in
PTV regions, maximum and mean dose value of OAR regions to rep-
resent the criteria 𝐶𝑃𝑇𝑉

1 , 𝐶𝑃𝑇𝑉
95 , 𝐶𝑃𝑇𝑉

99 , 𝐶𝑂𝐴𝑅
0.1𝑐𝑐 , and 𝐶𝑂𝐴𝑅

𝑚𝑒𝑎𝑛 . In Eq. (6),
𝐷𝑃𝑇𝑉

1 , 𝐷𝑃𝑇𝑉
95 , 𝐷𝑃𝑇𝑉

99 , 𝐷𝑂𝐴𝑅
0.1𝑐𝑐 , 𝐷

𝑂𝐴𝑅
𝑚𝑒𝑎𝑛 denote the difference of the corre-

sponding criteria between the prediction and the ground truth.
The total loss function will be elaborated as follows:

𝐿 = 𝐿𝑚 + 𝜆1𝐿𝑟 + 𝜆2𝐿𝑐𝑠 + 𝜆3𝐿𝑐𝐷𝑉 𝐻 + 𝜆4𝐿𝑣𝐷𝑉 𝐻 + 𝜆5𝐿𝑒, (7)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 are hyper-parameters for balancing the contri-
butions of different losses.
5

3.4. Implementation details

All of our experiments are implemented with Pytorch framework
and one NVIDIA TITANV GPU with 12 GB. The models are trained
for 1000 epochs with early stopping. The batch size is 2, and the
Adam optimizer with an initial learning rate of 10−4 is used during
the training process. Moreover, we perform online data augmentation
to avoid overfitting, including random rotation ranging from −20◦ to
0◦ and random flip along the Z axis. The three PTV masks and seven
AR masks are concatenated into one mask, respectively, in which
ifferent ROI masks are assigned by different labels. The intensity of
he CT image is first cropped to the range of [600,1400] since the
ntensity of the CT image from the public official dataset is HU+1000
cale, then divided by 1000 HU. The GDN is a 3D U-Net (Ronneberger
t al., 2015) with the convolution layer replacing the pooling layer.
he BDN is configured as two backbone networks, i.e., 3D U-Net and

ResUnet. For the ResUnet configuration, we add residual connections to
each convolutional block in the 3D U-Net. For better understanding and
reproducibility of our method, we release our source code on GitHub.2

4. Experiments

4.1. Dataset

We utilize the public H&N cancer dataset3 from the AAPM OpenKBP
challenge (Babier et al., 2021), which contains 200 training cases,
40 validation cases, and 100 testing cases. A few cases include a CT
image, PTV masks with three prescription doses (56 Gy, 63 Gy, and
70 Gy), seven OAR masks (brainstem, spinal cord, right parotid, left
parotid, larynx, esophagus, and mandible), a feasible dose mask (a
mask of where dose can be non-zero), a 3D dose distribution map.
The dose distribution map is delivered from nine equispaced coplanar
beams at 0◦, 40◦,… , 320◦, with 6 MV, step and shoot, IMRT. There is
a varying voxel spacing between different cases, but the approximate
voxel spacing is 3.906 mm × 3.906 mm × 2.5 mm. All the images and
masks are resampled to the same size of 128 × 128 × 128.

4.2. Evaluation metrics

We employ two official metrics from the OpenKBP challenge (Babier
et al., 2021), i.e., Dose score and DVH score, to quantitatively evaluate
the prediction performance of models. Dose score calculates the voxel-
wise MAE between the predicted and the reference dose distributions.
DVH score measures the absolute difference in DVH criteria between
the predicted and its corresponding ground-truth values. The lower the
two metrics, the better the prediction results.

To validate the quality of the dose distribution from the perspective
of dosimetrists, we introduce a set of clinical criteria, such as 𝐷99,
𝐷95, 𝐷1, conformity index (CI) (Paddick, 2000), homogeneity index
(HI) (Helal and Omar, 2015) for PTV dose coverage, and 𝐷𝑚𝑒𝑎𝑛 and
𝐷0.1𝑐𝑐 for OAR dose coverage. Here, 𝐷𝑣 is the minimum dose received
by 𝑣% of the PTV volume. 𝑉𝐷 represents the percentage volume that
receives a dose level of at least 𝐷. 𝐷𝑚𝑒𝑎𝑛 denotes the mean dose
absorbed by the OAR, respectively. CI is defined as:

CI =
(

𝑉𝑇 ∩ 𝑉𝑃𝐼
)2

𝑉𝑇 𝑉𝑃𝐼
, (8)

where 𝑉𝑇 is the volume of the target (i.e., PTV). 𝑉𝑃𝐼 is the volume
receiving dose greater than or equal to the prescription isodose. And
𝑉𝑇 ∩ 𝑉𝑃𝐼 denotes the intersection of the target volume and the pre-
scription isodose volume. CI describes the fitness of the target volume

2 https://github.com/TL9792/BDCLDosePrediction
3 https://github.com/ababier/open-kbp/tree/master/provided-data

https://github.com/TL9792/BDCLDosePrediction
https://github.com/ababier/open-kbp/tree/master/provided-data
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Table 1
Hyper-parameter selection of 𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5 (representing the weights for 𝐿𝑟, 𝐿𝑐𝑠, 𝐿𝑐𝐷𝑉 𝐻 , 𝐿𝑣𝐷𝑉 𝐻 ,
and 𝐿𝑒, respectively) using NPE of Dose score and DVH score.
𝜆1 NPE 𝜆2 NPE 𝜆3 NPE 𝜆4 NPE 𝜆5 NPE

0 0.0222 0 0.0220 0 0.0220 0 0.0233 0 0.0221
0.05 0.0221 0.1 0.0217 0.1 0.0217 0.5 0.0222 0.5 0.0217
0.5 0.0217 1 0.0233 1 0.0219 1 0.0217 1 0.0229
5 0.0225 5 0.0452 5 0.0221 5 0.0221 5 0.0235
10 0.0229 10 0.0537 10 0.0283 10 0.0242 10 0.0240
and the prescription isodose volume. The higher the CI, the better the
prediction results. Meanwhile, the HI formulation is defined as:

HI =
𝐷2 −𝐷98

𝐷50
, (9)

which denotes dose uniformity in the target. In contrast to CI, the lower
the HI, the better the prediction results.

In addition, to quantify the disparity between the prediction and the
ground truth, we calculate the normalized prediction error (NPE). For
CI and HI, NPE takes Eq. (10). For the rest metrics, NPE is calculated in
Eq. (11). We adopt 𝑁𝑃𝐸±𝑆𝐷 to represent the prediction error, where
𝑆𝐷 is the standard deviation and the NPE is defined as:

NPE = 1
𝑛

𝑛
∑

𝑖=1
|𝑋𝐺𝑇

𝑖 −𝑋𝑝𝑟𝑒𝑑
𝑖 |, (10)

NPE =
1
𝑛
∑𝑛

𝑖=1 |𝑋
𝐺𝑇
𝑖 −𝑋𝑝𝑟𝑒𝑑

𝑖 |

𝐷𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
, (11)

where 𝑛 represents the number of testing cases, 𝑋𝐺𝑇 denotes the
ground-truth value, and 𝑋𝑝𝑟𝑒𝑑 is the corresponding predicted value.
𝐷𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 represents a prescription dose value delivered in PTV. Fur-
thermore, to prove the significant improvement of our method com-
pared with the state-of-the-art methods, we conduct paired t-test to con-
firm that the improvement margin is considered statistically significant
when the 𝑝-value is lower than 0.05.

4.3. Selection of hyper-parameters

To validate the effect of the hyper-parameters in Eq. (7), i.e., the
weights 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 of different loss terms, to the model perfor-
mance, we conduct a series of experiments using the ResUnet backbone
to analyze their optimal values. Specifically, the process of tuning
hyper-parameters is divided into two steps. First, we roughly set a
reasonable range between [0, 10] with different intervals for five hyper-
parameters according to the magnitude and relative importance of the
corresponding loss function. For example, 𝐿𝑟 plays an important role in
the final prediction result since it supervises the network learning on
the global image space. Thus, we set a large value for 𝜆1. As 𝐿𝐷𝑉𝐻 can
constrain the network to focus on ROIs, we also set a relatively large
value for 𝜆2. Besides, since high-frequency information (e.g., gradient
information) is more difficult to learn compared with low-frequency
information, we define a relatively small value for 𝜆3. Second, we
further explore an optimal value by fixing other hyper-parameters to
tune a certain one. The reference metric is the NPE of Dose score and
DVH score. For instance, we first fix {𝜆2, 𝜆3, 𝜆4, 𝜆5} to {0.1, 0.1, 0.5, 0.5},
respectively, and vary 𝜆1 from 0 to 10. Experiment results are shown in
Table 1. It is clear that better performance is achieved when 𝜆1 is set to
0.5. Then we explore the optimal values of the remaining four hyper-
parameters in the same way as above. In the end, the performance of
our method is optimal when setting 𝜆2, 𝜆3, 𝜆4, and 𝜆5 to be 0.1, 0.1, 1,
and 0.5, respectively.
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Fig. 4. Radar charts of NPE of Dose score for field doses in all individual beam
angles yielded by different SOTA methods. Each line with a different color represents
prediction result from different method.

4.4. Comparison with state-of-the-art methods

In this section, we conduct a comparison with state-of-the-art meth-
ods for dose prediction to demonstrate the superiority of our method.
The competing methods include V-Net (Milletari et al., 2016), DoseNet
(Kearney et al., 2018a), HD U-net (Nguyen et al., 2019), DCNN (Zhang
et al., 2020), C3D (Liu et al., 2021) and the method proposed of
our conference paper (Wang et al., 2022). The first four methods are
well-established methods for dose prediction task, and the C3D ranks
first in the OpenKBP challenge (Babier et al., 2021, 2022). For a fair
comparison, the first three approaches are reproduced by the same
implementation strategy as our method. For the last three methods,
we directly refer to the results from their papers or released codes.
All methods use the same dataset and the same data split from the
Challenge.

Table 2 shows the quantitative results with the top approaches from
the Challenge. We can see that our method achieves the best perfor-
mance in terms of Dose score and DVH score. Importantly, Table 3 gives
a comprehensive assessment of the dose quality from various clinical
criteria. Among the competing methods, we can see that our method
obtains superior performance in all NPE of criteria. In addition, we also
quantify NPE of Dose score for the field dose distributions in terms of
radar chart. Fig. 4 shows that our method exhibits lower error than
other methods in all beam angles.

Fig. 5 is the visualization of the predicted dose distribution maps.
It shows that our prediction is more consistent with the ground truth,
regarding not only the global space but also the local regions, especially
for the beam paths, ROIs, and gradient boundaries. This result well-
demonstrates the effectiveness of our strategy toward the beam-wise
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Table 2
Performance comparison between SOTA methods and our method in terms of Dose score and DVH score.

Method Dose score [Gy] DVH score [Gy]

Xu et al. (Xu et al., 2021) 2.753a 1.556a

Lin et al. (Lin et al., 2021) 2.357a 1.465a

LukasFetty (Aaron Babier, 2020) 2.650a 1.539a

Zimmermann et al. (Zimmermann et al., 2021) 2.620 ± 1.100a 1.520 ± 1.060a

Gronberg et al. (Gronberg et al., 2021) 2.563 ± 1.143* 1.704 ± 1.096*
C3D (Liu et al., 2021) 2.429 ± 1.031* 1.478 ± 1.552*
Wang et al. (Wang et al., 2022) 2.276 ± 1.013* 1.257 ± 1.163*
Ours 2.066 ± 0.900 0.977 ± 1.091

* 𝑝-value < 0.05.
a Results reported in original literature.
Table 3
Performance comparison between SOTA methods and our method in terms of PTVs’ dose coverage (indicated by NPE ± SD of 𝐶𝐼 , 𝐻𝐼 , 𝐷99, 𝐷95, and 𝐷1) and OARs’ dose coverage
(indicated by NPE ± SD of 𝐷𝑚𝑒𝑎𝑛 and 𝐷0.1𝑐𝑐 ).

Method CI HI 𝐷99 𝐷95 𝐷1

V-Net (Milletari et al., 2016) 0.086 ± 0.143* 0.036 ± 0.048* 0.034 ± 0.038* 0.026 ± 0.031* 0.025 ± 0.021*
DoseNet (Kearney et al., 2018a) 0.057 ± 0.115* 0.026 ± 0.041* 0.021 ± 0.034 0.016 ± 0.028* 0.020 ± 0.016*
DCNN (Zhang et al., 2020) 0.057 ± 0.105* 0.030 ± 0.042* 0.025 ± 0.034* 0.018 ± 0.027* 0.021 ± 0.018*
HD U-net (Nguyen et al., 2019) 0.072 ± 0.136* 0.031 ± 0.043* 0.025 ± 0.033* 0.019 ± 0.027* 0.025 ± 0.022*
C3D (Liu et al., 2021) 0.055 ± 0.120* 0.026 ± 0.042* 0.021 ± 0.033 0.016 ± 0.028* 0.019 ± 0.017*
Wang et al. (Wang et al., 2022) 0.063 ± 0.128* 0.022 ± 0.037 0.022 ± 0.032* 0.016 ± 0.027* 0.019 ± 0.015*
Ours 0.041 ± 0.085 0.021 ± 0.041 0.020 ± 0.032 0.013 ± 0.025 0.011 ± 0.012

Method 𝐷𝑚𝑒𝑎𝑛 𝐷0.1𝑐𝑐

Right parotid Left parotid Esophagus Larynx Brainstem Spinal cord Mandible

V-Net (Milletari
et al., 2016)

0.048 ± 0.044* 0.053 ± 0.049* 0.035 ± 0.033* 0.049 ± 0.040* 0.053 ± 0.064* 0.049 ± 0.046* 0.022 ± 0.020*

DoseNet
(Kearney et al.,
2018a)

0.058 ± 0.048* 0.048 ± 0.049* 0.035 ± 0.038* 0.042 ± 0.038* 0.056 ± 0.064* 0.042 ± 0.042* 0.019 ± 0.026*

DCNN (Zhang
et al., 2020)

0.068 ± 0.055* 0.065 ± 0.059* 0.053 ± 0.046* 0.041 ± 0.036* 0.052 ± 0.061* 0.046 ± 0.042* 0.020 ± 0.023*

HD U-net
(Nguyen et al.,
2019)

0.052 ± 0.045* 0.054 ± 0.047* 0.038 ± 0.036* 0.042 ± 0.049* 0.052 ± 0.061* 0.041 ± 0.036* 0.021 ± 0.022*

C3D (Liu et al.,
2021)

0.046 ± 0.040* 0.052 ± 0.048* 0.039 ± 0.041* 0.040 ± 0.051* 0.049 ± 0.066* 0.044 ± 0.035* 0.018 ± 0.025*

Wang et al.
(Wang et al.,
2022)

0.044 ± 0.036* 0.042 ± 0.043* 0.018 ± 0.025 0.029 ± 0.026* 0.030 ± 0.056 0.020 ± 0.019 0.020 ± 0.028*

Ours 0.033 ± 0.034 0.041 ± 0.040 0.019 ± 0.023 0.023 ± 0.040 0.039 ± 0.059 0.029 ± 0.028 0.012 ± 0.012

* 𝑝-value < 0.05.
Fig. 5. Visualization of results yielded by different methods from two cases. The first and third rows are the dose distribution maps. The second and fourth rows are the error
maps.
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Fig. 6. DVH curve of the ground-truth (solid line) and predicted (dashed line) dose distribution maps yielded by different SOTA methods. Different color curves indicate DVH
curves of different ROIs.
dose distributions and dose gradients. In addition, Fig. 6 provides an
analysis of the DVH curve. It is apparent that the DVH curves predicted
by our method match best with the ground truth, proving that our
predictions in ROIs are more accurate and better satisfy the design
requirement of treatment plan in clinical workflow.

4.5. Ablation analysis

To verify the effectiveness of key components in our method, we
conduct a series of ablation studies under two different backbone
configurations, i.e., 3D U-Net and ResUnet. We use a cascaded U-Net as
the baseline framework, and then sequentially add key components in
an order of (1) beam-wise dose prediction (BDP) including beam-wise
decomposition module and multi-beam voting mechanism, (2) DVH
calibration (𝐿𝐷𝑉𝐻 ) including value- and criteria-based DVH loss, (3)
overlap consistency module (𝐿𝑐𝑠), and (4) edge enhancement (𝐿𝑒). The
quantitative results are shown in Table 4, and the qualitative results
are given in Fig. 7.

From Table 4, we can clearly see that the Dose score and DVH
score are decreasing with the addition of key components. Especially
for the components of BDP and 𝐿𝐷𝑉𝐻 , both of the metrics decrease by
a large margin under different backbones. For example, under 3D U-
Net backbone, BDP can make Dose score reduce from 2.862 to 2.401,
demonstrating that it can improve the accuracy of dose prediction. And
then adding 𝐿𝐷𝑉𝐻 brings 31% of improvement (from 1.567 to 1.257)
in terms of DVH score, indicating that 𝐿𝐷𝑉𝐻 can make prediction more
precise on ROIs. For the ResUnet backbone, it shows a consistency ten-
dency and has a more excellent performance when the corresponding
components are added in sequence.

We further evaluate the 𝐿𝑐𝑠 and 𝐿𝑒 introduced in this work by
comparing with our prior conference paper (Wang et al., 2022) (Base-
line+BDP
+𝐿𝐷𝑉𝐻 ). Fig. 7 shows visual comparison results, indicating that adding
𝐿𝑐𝑠 can make local details of the dose distribution have significant
improvement, and also shows its contribution to learning high-level
features so as to achieve better prediction performance. Last, adding
𝐿𝑒 makes our prediction best match the ground truth, especially for
shapes and boundaries of the dose falloff regions. The error map in the
last row confirms our findings.
8

5. Discussion

Automatic dose prediction is of great clinical significance in RT
plan. An accurate dose distribution map provides crucial guidance for
dosimetrists and thus can serve as a good initialization for subsequent
dose optimization, which solves the problem of the NP-hard to optimize
treatment plan in clinical workflows. However, the predicted dose
distribution map is not physically deliverable because the prediction
model does not consider any machine parameters or beam fluence that
deliver the dose. In order to utilize the prediction to generate actual
RT plan, many works are emerging (Fan et al., 2019; McIntosh et al.,
2017; Sun et al., 2022). For example, Fan et al. (2019) fed the predicted
dose distribution map into a treatment planning system (e.g., matRad)
to produce clinically acceptable plan. McIntosh et al. (2017) converted
the predicted voxel-wise dose distribution into a deliverable RT plan
by a voxel-based dose mimicking method.

In order to make the prediction close to the clinical RT plan, we
proposed a novel DVH calibration process. Compared with the DVH loss
proposed in Nguyen et al. (2020) (detailed in Section 3.3), our proposed
method can accelerate the training speed and improve the calculation
accuracy. To demonstrate our advantage, we conduct a comparison
experiment in terms of convergence speed, GPU memory consumption,
and computational time. The experimental results demonstrate that
applying our DVH calibration leads to a fast convergence speed com-
pared with the model trained by the DVH loss (Nguyen et al., 2020).
Moreover, the total training process with our DVH calibration takes
about 12 GB GPU memory and the computational time for an epoch
is 2 min, which are significantly lower than those by using the DVH
loss (23 GB and 6 min).

Despite the superior performance achieved by our method, there
are still some limitations in our work. One limitation is that the beam
masks are generated by a parallel-shaped radiation delivery from a line
source. However, in clinical practice, beams are generated in the form
of a cone-shaped radiation delivery from a point source. How to fit
actual beams for delivering radiation is not explored yet, which will
be our future work. Another limitation of this work is that we did
not utilize the actual individual IMRT field dose (Ehrgott et al., 2010;
Losasso et al., 2001) to train the BDN for beam-wise dose refinement.
Instead, we used a masked version of the total dose to approximate the
individual field dose for each beam. This is because the used public
dataset did not contain the individual field dose files. We believe that,

by introducing the actual individual IMRT field doses for BDN training,
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Table 4
Experimental results of ablation studies on our proposed method using two different backbone networks.

Method 3D U-Net ResUnet

Dose score [Gy] DVH score [Gy] Dose score [Gy] DVH score [Gy]

Baseline 2.862 ± 1.049* 1.586 ± 1.146* 2.803 ± 1.125* 1.533 ± 1.111*
Baseline+BDP 2.401 ± 1.033* 1.567 ± 1.179* 2.306 ± 1.017* 1.395 ± 1.234*
Baseline+BDP+𝐿𝐷𝑉𝐻 2.276 ± 1.014* 1.257 ± 1.163* 2.281 ± 0.962* 1.185 ± 1.161*
Baseline+BDP+𝐿𝐷𝑉𝐻 + 𝐿𝑐𝑠 2.265 ± 0.976* 1.172 ± 1.182 2.152 ± 0.917* 1.068 ± 1.112*
Baseline+BDP+𝐿𝐷𝑉𝐻 + 𝐿𝑐𝑠 + 𝐿𝑒 2.113 ± 0.903 1.124 ± 1.132 2.066 ± 0.900 0.977 ± 1.091

* 𝑝-value < 0.05.
Fig. 7. Visual comparison results of ablation studies using 3D U-Net (left) and ResUnet (right) backbones. The first row shows the dose distribution map. And the second row
shows the error map.
the performance of the proposed method can be further improved.
Since in this work we mainly focus on the prototype study improving
the predicted dose distribution along the decomposed beam paths, we
reserve this as one of our future works. The third limitation is that
our proposed overlap consistency constraint is only applicable for the
traditional IMRT treatment with fixed beams but not for some more
advanced treatments such as the IMRT using rotational arc technique
or VMAT (Volumetric Modulated Arc Therapy) (Ma et al., 2019), in
which the dose ratio of beams with different directions is dynamically
changing. Developing a more robust algorithm to predict dose distri-
bution for more types of RT will be one of our future work. The last
limitation comes from the use of a single type of dataset, H&N cancer.
Thus, in our future work, we will use other datasets with different types
of cancer to evaluate the generalization of our proposed method.

6. Conclusion

We have presented a novel beam-wise dose composition learning
(BDCL) method for dose prediction in H&N RT plan. In this method,
we first utilize the GDN to estimate a coarse dose distribution map
over the whole-image space. Then, the coarse dose distribution map
is decomposed into multiple field doses, with each individually refined
by the BDN. Finally, the refined beam doses are reassembled into a
new global dose distribution map by the proposed multi-beam voting
mechanism. Moreover, the dose distribution of ROIs and the dose falloff
regions are refined by our proposed DVH calibration process (using
value- and criteria-based DVH regularization) and edge enhancement
procedure. Experimental results show that our method achieves supe-
rior performance over other state-of-the-art methods in terms of all
metrics. It is worth noting that our prediction is close to the physically
deliverable one from the perspective of clinical criteria, and thus can
be used as a good starting point for subsequent dose optimization. This
will substantially reduce time consumption and plan variation in the
clinical workflow.
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